2020考研數(shù)學一考試大綱(概率部分)考試內(nèi)容和要求變化分析
2020考研大綱將于2019年7月8日上午正式發(fā)布!跨考教育小編第一時間發(fā)布2020考研大綱,教研老師也將第一時間為小伙伴帶來考研大綱解讀,希望各位考研的小伙伴及時關(guān)注,敬請期待!下面是2020、2019年考研數(shù)學一考試大綱(概率部分)考試內(nèi)容和考試要求變化對比,以供參考!
章節(jié) | 2020年考試數(shù)學大綱考試內(nèi)容和考試要求 | 2019年考試數(shù)學大綱考試內(nèi)容和考試要求 | 變化 |
一、隨機事件和概率 | 考試內(nèi)容 隨機事件與樣本空間事件的關(guān)系與運算完備事件組概率的概念概率的基本性質(zhì)古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重復試驗 考試要求 1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關(guān)系及運算. 2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式. 3.理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關(guān)事件概率的方法. |
考試內(nèi)容 隨機事件與樣本空間事件的關(guān)系與運算完備事件組概率的概念概率的基本性質(zhì)古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重復試驗 考試要求 1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關(guān)系及運算. 2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式. 3.理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關(guān)事件概率的方法. |
對比 :無變化 |
二、隨機變量及其分布 | 考試內(nèi)容 隨機變量隨機變量分布函數(shù)的概念及其性質(zhì)離散型隨機變量的概率分布連續(xù)型隨機變量的概率密度常見隨機變量的分布隨機變量函數(shù)的分布 考試要求 1.理解隨機變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機變量相聯(lián)系的事件的概率. 2.理解離散型隨機變量及其概率分布的概念,掌握0-1分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應用. 3.了解泊松定理的結(jié)論和應用條件,會用泊松分布近似表示二項分布. 4.理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應用,其中參數(shù)為的指數(shù)分布的概率密度為 5.會求隨機變量函數(shù)的分布. |
考試內(nèi)容 隨機變量隨機變量分布函數(shù)的概念及其性質(zhì)離散型隨機變量的概率分布連續(xù)型隨機變量的概率密度常見隨機變量的分布隨機變量函數(shù)的分布 考試要求 1.理解隨機變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機變量相聯(lián)系的事件的概率. 2.理解離散型隨機變量及其概率分布的概念,掌握0-1分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應用. 3.了解泊松定理的結(jié)論和應用條件,會用泊松分布近似表示二項分布. 4.理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應用,其中參數(shù)為的指數(shù)分布的概率密度為 5.會求隨機變量函數(shù)的分布. |
對比 :無變化 |
三、多維隨機變量及其分布 | 考試內(nèi)容 多維隨機變量及其分布二維離散型隨機變量的概率分布、邊緣分布和條件分布二維連續(xù)型隨機變量的概率密度、邊緣概率密度和條件密度隨機變量的獨立性和不相關(guān)性常用二維隨機變量的分布兩個及兩個以上隨機變量簡單函數(shù)的分布 考試要求 1.理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質(zhì),理解二維離散型隨機變量的概率分布、邊緣分布和條件分布,理解二維連續(xù)型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量相關(guān)事件的概率. 2.理解隨機變量的獨立性及不相關(guān)性的概念,掌握隨機變量相互獨立的條件. 3.掌握二維均勻分布,了解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義. 4.會求兩個隨機變量簡單函數(shù)的分布,會求多個相互獨立隨機變量簡單函數(shù)的分布. |
考試內(nèi)容 多維隨機變量及其分布二維離散型隨機變量的概率分布、邊緣分布和條件分布二維連續(xù)型隨機變量的概率密度、邊緣概率密度和條件密度隨機變量的獨立性和不相關(guān)性常用二維隨機變量的分布兩個及兩個以上隨機變量簡單函數(shù)的分布 考試要求 1.理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質(zhì),理解二維離散型隨機變量的概率分布、邊緣分布和條件分布,理解二維連續(xù)型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量相關(guān)事件的概率. 2.理解隨機變量的獨立性及不相關(guān)性的概念,掌握隨機變量相互獨立的條件. 3.掌握二維均勻分布,了解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義. 4.會求兩個隨機變量簡單函數(shù)的分布,會求多個相互獨立隨機變量簡單函數(shù)的分布. |
對比 :無變化 |
四、隨機變量的數(shù)字特征 | 考試內(nèi)容 隨機變量的數(shù)學期望(均值)、方差、標準差及其性質(zhì)隨機變量函數(shù)的數(shù)學期望矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì) 考試要求 1.理解隨機變量數(shù)字特征(數(shù)學期望、方差、標準差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會運用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征. 2.會求隨機變量函數(shù)的數(shù)學期望. |
考試內(nèi)容 隨機變量的數(shù)學期望(均值)、方差、標準差及其性質(zhì)隨機變量函數(shù)的數(shù)學期望矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì) 考試要求 1.理解隨機變量數(shù)字特征(數(shù)學期望、方差、標準差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會運用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征. 2.會求隨機變量函數(shù)的數(shù)學期望. |
對比 :無變化 |
五、大數(shù)定律和中心極限定理 | 考試內(nèi)容 切比雪夫(Chebyshev)不等式切比雪夫大數(shù)定律伯努利(Bernoulli)大數(shù)定律辛欽(Khinchine)大數(shù)定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理 考試要求 1.了解切比雪夫不等式. 2.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機變量序列的大數(shù)定律). 3.了解棣莫弗-拉普拉斯定理(二項分布以正態(tài)分布為極限分布)和列維-林德伯格定理(獨立同分布隨機變量序列的中心極限定理). |
考試內(nèi)容 切比雪夫(Chebyshev)不等式切比雪夫大數(shù)定律伯努利(Bernoulli)大數(shù)定律辛欽(Khinchine)大數(shù)定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理 考試要求 1.了解切比雪夫不等式. 2.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機變量序列的大數(shù)定律). 3.了解棣莫弗-拉普拉斯定理(二項分布以正態(tài)分布為極限分布)和列維-林德伯格定理(獨立同分布隨機變量序列的中心極限定理). |
對比 :無變化 |
六、數(shù)理統(tǒng)計的基本概念 | 考試內(nèi)容 總體個體簡單隨機樣本統(tǒng)計量樣本均值樣本方差和樣本矩分布分布分布分位數(shù)正態(tài)總體的常用抽樣分布 考試要求 1.理解總體、簡單隨機樣本、統(tǒng)計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為 2.了解分布、分布和分布的概念及性質(zhì),了解上側(cè)分位數(shù)的概念并會查表計算. 3.了解正態(tài)總體的常用抽樣分布. |
考試內(nèi)容 總體個體簡單隨機樣本統(tǒng)計量樣本均值樣本方差和樣本矩分布分布分布分位數(shù)正態(tài)總體的常用抽樣分布 考試要求 1.理解總體、簡單隨機樣本、統(tǒng)計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為 2.了解分布、分布和分布的概念及性質(zhì),了解上側(cè)分位數(shù)的概念并會查表計算. 3.了解正態(tài)總體的常用抽樣分布. |
對比 :無變化 |
七、參數(shù)估計 |
考試內(nèi)容 點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選標準區(qū)間估計的概念單個正態(tài)總體的均值和方差的區(qū)間估計兩個正態(tài)總體的均值差和方差比的區(qū)間估計 考試要求 1.理解參數(shù)的點估計、估計量與估計值的概念. 2.掌握矩估計法(一階矩、二階矩)和最大似然估計法. 3.了解估計量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會驗證估計量的無偏性. 4、理解區(qū)間估計的概念,會求單個正態(tài)總體的均值和方差的置信區(qū)間,會求兩個正態(tài)總體的均值差和方差比的置信區(qū)間. |
考試內(nèi)容 點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選標準區(qū)間估計的概念單個正態(tài)總體的均值和方差的區(qū)間估計兩個正態(tài)總體的均值差和方差比的區(qū)間估計 考試要求 1.理解參數(shù)的點估計、估計量與估計值的概念. 2.掌握矩估計法(一階矩、二階矩)和最大似然估計法. 3.了解估計量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會驗證估計量的無偏性. 4、理解區(qū)間估計的概念,會求單個正態(tài)總體的均值和方差的置信區(qū)間,會求兩個正態(tài)總體的均值差和方差比的置信區(qū)間. |
對比 :無變化 |
八、假設(shè)檢驗 | 考試內(nèi)容 顯著性檢驗假設(shè)檢驗的兩類錯誤單個及兩個正態(tài)總體的均值和方差的假設(shè)檢驗 考試要求 1.理解顯著性檢驗的基本思想,掌握假設(shè)檢驗的基本步驟,了解假設(shè)檢驗可能產(chǎn)生的兩類錯誤. 2.掌握單個及兩個正態(tài)總體的均值和方差的假設(shè)檢驗. |
考試內(nèi)容 顯著性檢驗假設(shè)檢驗的兩類錯誤單個及兩個正態(tài)總體的均值和方差的假設(shè)檢驗 考試要求 1.理解顯著性檢驗的基本思想,掌握假設(shè)檢驗的基本步驟,了解假設(shè)檢驗可能產(chǎn)生的兩類錯誤. 2.掌握單個及兩個正態(tài)總體的均值和方差的假設(shè)檢驗. |
對比 :無變化 |
(本文為跨考教育教研室高楊老師原創(chuàng),轉(zhuǎn)載請注明出處。)
2022考研初復試已經(jīng)接近尾聲,考研學子全面進入2023屆備考,跨考為23考研的考生準備了10大課包全程準備、全年復習備考計劃、目標院校專業(yè)輔導、全真復試模擬練習和全程針對性指導;2023考研的小伙伴針也已經(jīng)開始擇校和復習了,跨考考研暢學5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復習,暑假集訓營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!
點擊右側(cè)咨詢或直接前往了解更多
考研院校專業(yè)選擇和考研復習計劃 | |||
2023備考學習 | 2023線上線下隨時學習 | 34所自劃線院??佳袕驮嚪謹?shù)線匯總 | |
2022考研復試最全信息整理 | 全國各招生院??佳袕驮嚪謹?shù)線匯總 | ||
2023全日制封閉訓練 | 全國各招生院校考研調(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分數(shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學科門類排行榜 |
相關(guān)推薦
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標準班 | 課程介紹 | 咨詢 |
秋季集訓 | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復試資源(高定班)+復試課包(高定班)+復試指導(高定班)+復試班主任1v1服務(wù)(高定班)+復試面授密訓(高定班)+復試1v1(高定班) | |
2023集訓暢學 | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導體系+初試加強課+初試專屬服務(wù)+復試全科標準班服務(wù) |