2018年考研數(shù)學(xué)二大綱原文文字版

最后更新時(shí)間:2017-09-15 14:19:45
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來(lái)跨考秋季集訓(xùn)營(yíng),幫你尋方法,定方案! 了解一下>>

  2018考研英語(yǔ)(一)考試大綱(文字版)大綱于9月15日正式發(fā)布,現(xiàn)在值得注意的是對(duì)于大綱的變化以及之后該怎么安排有效的復(fù)習(xí)。為了幫助各位同學(xué)進(jìn)行后期的復(fù)習(xí),跨考網(wǎng)考研的輔導(dǎo)老師們對(duì)此進(jìn)行了詳細(xì)講解,幫助同學(xué)們了解大綱變化,并且做好后期的復(fù)習(xí)規(guī)劃,讓復(fù)習(xí)變得清晰明朗。

  2018年考研《數(shù)學(xué)二》大綱

  考試科目:高等數(shù)學(xué)、線性代數(shù)

  考試形式和試卷結(jié)構(gòu)

  一、試卷滿分及考試時(shí)間

  試卷滿分為150分,考試時(shí)間為180分鐘。

  二、答題方式

  答題方式為閉卷、筆試。

  三、試卷內(nèi)容結(jié)構(gòu)

  高等教學(xué)約78%

  線性代數(shù)約22%

  四、試卷題型結(jié)構(gòu)

  單項(xiàng)選擇題8小題,每小題4分,共32分

  填空題6小題,每小題4分,共24分

  解答題(包括證明題) 9小題,共94分

  高等數(shù)學(xué)

  一、函數(shù)、極限、連續(xù)

  考試內(nèi)容

  函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限與右極限無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較極限的四則運(yùn)算極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個(gè)重要極限:

  函數(shù)連續(xù)的概念函數(shù)間斷點(diǎn)的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)

  考試要求

  1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系。

  2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。

  3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。

  4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。

  5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系。

  6.掌握極限的性質(zhì)及四則運(yùn)算法則。

  7.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。

  8.理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限。

  9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型。

  10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。

  二、一元函數(shù)微分學(xué)

  考試內(nèi)容

  導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運(yùn)算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(dá)(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑

  考試要求

  1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。

  2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分。

  3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。

  4.會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。

  5.理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會(huì)用柯西(Cauchy)中值定理。

  6.掌握用洛必達(dá)法則求未定式極限的方法。

  7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)的最大值和最小值的求法及其應(yīng)用。

  8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)。當(dāng)時(shí),的圖形是凹的;當(dāng)時(shí),的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形。

  9.了解曲率、曲率圓和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑。

  三、一元函數(shù)積分學(xué)

  考試內(nèi)容

  原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導(dǎo)數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡(jiǎn)單無(wú)理函數(shù)的積分反常(廣義)積分定積分的應(yīng)用

  考試要求

  1.理解原函數(shù)的概念,理解不定積分和定積分的概念。

  2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。

  3.會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無(wú)理函數(shù)的積分。

  4.理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式。

  5.了解反常積分的概念,會(huì)計(jì)算反常積分。

  6.掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)平均值。

  四、多元函數(shù)微積分學(xué)

  考試內(nèi)容

  多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)多元函數(shù)的偏導(dǎo)數(shù)和全微分多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法二階偏導(dǎo)數(shù)多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質(zhì)和計(jì)算

  考試要求

  1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。

  2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。

  3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)。

  4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

  5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo))

  五、常微分方程

  考試內(nèi)容

  常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡(jiǎn)單的二階常系數(shù)非齊次線性微分方程微分方程的簡(jiǎn)單應(yīng)用

  考試要求

  1.了解微分方程及其階、解、通解、初始條件和特解等概念。

  2.掌握變量可分離的微分方程及一階線性微分方程的解法,會(huì)解齊次微分方程。

  3.會(huì)用降階法解下列形式的微分方程:和。

  4.理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。

  5.掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。

  6.會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程。

  7.會(huì)用微分方程解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

  線性代數(shù)

  一、行列式

  考試內(nèi)容

  行列式的概念和基本性質(zhì)行列式按行(列)展開(kāi)定理

  考試要求

  1.了解行列式的概念,掌握行列式的性質(zhì)。

  2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式。

  二、矩陣

  考試內(nèi)容

  矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià)分塊矩陣及其運(yùn)算

  考試要求

  1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣、對(duì)稱矩陣、反對(duì)稱矩陣和正交矩陣以及它們的性質(zhì)。

  2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。

  3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件。理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣。

  4.了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。

  5.了解分塊矩陣及其運(yùn)算。

  三、向量

  考試內(nèi)容

  向量的概念向量的線性組合和線性表示向量組的線性相關(guān)與線性無(wú)關(guān)向量組的極大線性無(wú)關(guān)組等價(jià)向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量的內(nèi)積線性無(wú)關(guān)向量組的的正交規(guī)范化方法

  考試要求

  1.理解維向量、向量的線性組合與線性表示的概念。

  2.理解向量組線性相關(guān)、線性無(wú)關(guān)的概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法。

  3.了解向量組的極大線性無(wú)關(guān)組和向量組的秩的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩。

  4.了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系。

  5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。

  四、線性方程組

  考試內(nèi)容

  線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質(zhì)和解的結(jié)構(gòu)齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的通解

  考試要求

  1.會(huì)用克拉默法則。

  2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。

  3.理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。

  4.理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念。

  5.會(huì)用初等行變換求解線性方程組。

  五、矩陣的特征值和特征向量

  考試內(nèi)容

  矩陣的特征值和特征向量的概念、性質(zhì)相似矩陣的概念及性質(zhì)矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣實(shí)對(duì)稱矩陣的特征值、特征向量及其相似對(duì)角矩陣

  考試要求

  1.理解矩陣的特征值和特征向量的概念及性質(zhì),會(huì)求矩陣的特征值和特征向量。

  2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對(duì)角化的充分必要條件,會(huì)將矩陣化為相似對(duì)角矩陣。

  3.理解實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì)。

  六、二次型

  考試內(nèi)容

  二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標(biāo)準(zhǔn)形和規(guī)范形用正交變換和配方法化二次型為標(biāo)準(zhǔn)形二次型及其矩陣的正定性

  考試要求

  1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換與合同矩陣的概念。

  2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。

  3.理解正定二次型、正定矩陣的概念,并掌握其判別法。

  更多大綱內(nèi)容關(guān)注:2018年碩士研究生考研大綱及解析專題

       小編說(shuō):有事沒(méi)事考個(gè)研,現(xiàn)在投資自己,10年之后就不會(huì)掙扎在5k左右的工資,不會(huì)被訓(xùn)練的為不到1k的調(diào)薪就覺(jué)得應(yīng)該歡呼,不會(huì)看著年輕人如何時(shí)間自主的文章而興嘆,也不會(huì)將出國(guó)游的計(jì)劃一再被擱置...沒(méi)有出社會(huì)的人總覺(jué)得工作很容易,月薪過(guò)萬(wàn)就是應(yīng)該,可骨感的現(xiàn)實(shí)告訴你,高學(xué)歷的人往往更容易更快的實(shí)現(xiàn)月薪過(guò)萬(wàn)?。「淖?,就從你加入秋季集訓(xùn)營(yíng)開(kāi)始!
2018考研大綱發(fā)布 新增考點(diǎn)名師解讀    取經(jīng)明星學(xué)長(zhǎng) 預(yù)約免費(fèi)試聽(tīng)
秋季提升需注意
重點(diǎn)關(guān)注 金九銀十 精準(zhǔn)擇校 讀懂院校招簡(jiǎn),復(fù)習(xí)不跑偏
秋季集訓(xùn)火熱招募中 考研名師帶著走 視頻免費(fèi)666
2018考研知識(shí)“秋季提升”大作戰(zhàn) 不得不知的考研大綱解讀 2018年考研報(bào)名注意事項(xiàng)問(wèn)答專欄

  2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對(duì)性指導(dǎo);2023考研的小伙伴針也已經(jīng)開(kāi)始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級(jí),無(wú)論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營(yíng)帶來(lái)了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識(shí)點(diǎn)入門;個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!

點(diǎn)擊右側(cè)咨詢或直接前往了解更多

考研院校專業(yè)選擇和考研復(fù)習(xí)計(jì)劃
2023備考學(xué)習(xí) 2023線上線下隨時(shí)學(xué)習(xí) 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總
2022考研復(fù)試最全信息整理 全國(guó)各招生院??佳袕?fù)試分?jǐn)?shù)線匯總
2023全日制封閉訓(xùn)練 全國(guó)各招生院??佳姓{(diào)劑信息匯總
2023考研先知 考研考試科目有哪些? 如何正確看待考研分?jǐn)?shù)線?
不同院校相同專業(yè)如何選擇更適合自己的 從就業(yè)說(shuō)考研如何擇專業(yè)?
手把手教你如何選專業(yè)? 高校研究生教育各學(xué)科門類排行榜

跨考考研課程

班型 定向班型 開(kāi)班時(shí)間 高定班 標(biāo)準(zhǔn)班 課程介紹 咨詢
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對(duì)1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對(duì)性一對(duì)一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測(cè)試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù)

①凡本網(wǎng)注明“稿件來(lái)源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個(gè)人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時(shí)必須注明“稿件來(lái)源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來(lái)源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來(lái)源”,并自負(fù)版權(quán)等法律責(zé)任。如擅自篡改為“稿件來(lái)源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問(wèn)題,請(qǐng)作者見(jiàn)稿后在兩周內(nèi)速來(lái)電與跨考網(wǎng)聯(lián)系,電話:400-883-2220