考研數(shù)學(xué)(二)2018考研大綱與2017變化對比(線代部分)
2018考研數(shù)學(xué)(二)考試大綱(文字版)大綱于9月15日正式發(fā)布,現(xiàn)在值得注意的是對于大綱的變化以及之后該怎么安排有效的復(fù)習(xí)。為了幫助各位同學(xué)進(jìn)行后期的復(fù)習(xí),跨考網(wǎng)考研的輔導(dǎo)老師們對此進(jìn)行了詳細(xì)講解,幫助同學(xué)們了解大綱變化,并且做好后期的復(fù)習(xí)規(guī)劃,讓復(fù)習(xí)變得清晰明朗。
詳情請下載:考研數(shù)學(xué)(二)2018考研大綱與2017變化對比(線代部分)
章節(jié) | 2017年考試數(shù)學(xué)大綱考試內(nèi)容和考試要求 | 2018年考試數(shù)學(xué)大綱考試內(nèi)容和考試要求 | 變化 |
一、行列式 | 考試內(nèi)容 行列式的概念和基本性質(zhì)行列式按行(列)展開定理 考試要求 1.了解行列式的概念,掌握行列式的性質(zhì)。 2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式。 |
考試內(nèi)容 行列式的概念和基本性質(zhì)行列式按行(列)展開定理 考試要求 1.了解行列式的概念,掌握行列式的性質(zhì)。 2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式。 |
對比 :無變化 |
二、矩陣 | 考試內(nèi)容 矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運(yùn)算 考試要求 1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質(zhì)。 2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。 3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件。理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。 4.了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。 5.了解分塊矩陣及其運(yùn)算。 |
考試內(nèi)容 矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運(yùn)算 考試要求 1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質(zhì)。 2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。 3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件。理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。 4.了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。 5.了解分塊矩陣及其運(yùn)算。 |
對比 :無變化 |
三、向量 | 考試內(nèi)容 向量的概念向量的線性組合和線性表示向量組的線性相關(guān)與線性無關(guān)向量組的極大線性無關(guān)組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量的內(nèi)積線性無關(guān)向量組的的正交規(guī)范化方法 考試要求 1.理解維向量、向量的線性組合與線性表示的概念。 2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法。 3.了解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩。 4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系。 5.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。 |
考試內(nèi)容 向量的概念向量的線性組合和線性表示向量組的線性相關(guān)與線性無關(guān)向量組的極大線性無關(guān)組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量的內(nèi)積線性無關(guān)向量組的的正交規(guī)范化方法 考試要求 1.理解維向量、向量的線性組合與線性表示的概念。 2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法。 3.了解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩。 4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系。 5.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。 |
對比 :無變化 |
四、線性方程組 | 考試內(nèi)容 線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質(zhì)和解的結(jié)構(gòu)齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的通解 考試要求 1.會用克拉默法則。 2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。 3.理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。 4.理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念。 5.會用初等行變換求解線性方程組。 |
考試內(nèi)容 線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質(zhì)和解的結(jié)構(gòu)齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的通解 考試要求 1.會用克拉默法則。 2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。 3.理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。 4.理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念。 5.會用初等行變換求解線性方程組。 |
對比 :無變化 |
五、矩陣的特征值和特征向量 | 考試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì)相似矩陣的概念及性質(zhì)矩陣可相似對角化的充分必要條件及相似對角矩陣實(shí)對稱矩陣的特征值、特征向量及其相似對角矩陣 考試要求 1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量。 2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣。 3.理解實(shí)對稱矩陣的特征值和特征向量的性質(zhì)。 |
考試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì)相似矩陣的概念及性質(zhì)矩陣可相似對角化的充分必要條件及相似對角矩陣實(shí)對稱矩陣的特征值、特征向量及其相似對角矩陣 考試要求 1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量。 2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣。 3.理解實(shí)對稱矩陣的特征值和特征向量的性質(zhì)。 |
對比 :無變化 |
六、二次型 | 考試內(nèi)容 二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標(biāo)準(zhǔn)形和規(guī)范形用正交變換和配方法化二次型為標(biāo)準(zhǔn)形二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念。 2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。 3.理解正定二次型、正定矩陣的概念,并掌握其判別法。 |
考試內(nèi)容 二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標(biāo)準(zhǔn)形和規(guī)范形用正交變換和配方法化二次型為標(biāo)準(zhǔn)形二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念。 2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。 3.理解正定二次型、正定矩陣的概念,并掌握其判別法。 |
對比 :無變化 |
更多大綱內(nèi)容關(guān)注:2018年碩士研究生考研大綱及解析專題
小編說:有事沒事考個研,現(xiàn)在投資自己,10年之后就不會掙扎在5k左右的工資,不會被訓(xùn)練的為不到1k的調(diào)薪就覺得應(yīng)該歡呼,不會看著年輕人如何時間自主的文章而興嘆,也不會將出國游的計(jì)劃一再被擱置...沒有出社會的人總覺得工作很容易,月薪過萬就是應(yīng)該,可骨感的現(xiàn)實(shí)告訴你,高學(xué)歷的人往往更容易更快的實(shí)現(xiàn)月薪過萬??!改變,就從你加入秋季集訓(xùn)營開始!2018考研大綱發(fā)布 新增考點(diǎn)名師解讀 取經(jīng)明星學(xué)長 預(yù)約免費(fèi)試聽
秋季提升需注意 | ||
重點(diǎn)關(guān)注 | 金九銀十 精準(zhǔn)擇校 | 讀懂院校招簡,復(fù)習(xí)不跑偏 |
秋季集訓(xùn)火熱招募中 | 考研名師帶著走 視頻免費(fèi)666 | |
2018考研知識“秋季提升”大作戰(zhàn) | 不得不知的考研大綱解讀 | 2018年考研報名注意事項(xiàng)問答專欄 |
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點(diǎn)入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!
考研院校專業(yè)選擇和考研復(fù)習(xí)計(jì)劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時學(xué)習(xí) | 34所自劃線院??佳袕?fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國各招生院??佳袕?fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國各招生院校考研調(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
2021考研數(shù)學(xué)(一)大綱原文:概率論與數(shù)理統(tǒng)計(jì)
2021考研數(shù)學(xué)(一)大綱原文:線性代數(shù)部分
2021考研數(shù)學(xué)(一)大綱原文:高等數(shù)學(xué)部分
2021大綱解析之?dāng)?shù)一、二、三常微分方程部分對比
2021考研數(shù)學(xué)一考試大綱與2020變化對比(高數(shù)部分)
2021新大綱發(fā)布后考研數(shù)學(xué)備考策略
【跨考名師解析】對2021考研數(shù)學(xué)大綱內(nèi)容改革的分析
【跨考名師解析】2021考研數(shù)學(xué)大綱框架變動分析
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |