2022考研高數(shù)基礎(chǔ)備考:不得不背的8個概念
2022考研的考生們已經(jīng)開始了第一輪復(fù)習(xí)備考計劃,數(shù)學(xué)作為考研中能夠拉開大分差的科目,有多少考研er是因為數(shù)學(xué)與自己心儀的院校失之交臂?建議考研數(shù)學(xué)基礎(chǔ)不好的小伙伴早點開始復(fù)習(xí),下面小編整理了2022年考研高數(shù)不得不背的8個概念,一起來看看吧。
1、函數(shù)極限連續(xù)
?、僬_理解函數(shù)的概念,了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性,理解復(fù)合函數(shù)、反函數(shù)及隱函數(shù)的概念。
?、诶斫鈽O限的概念,理解函數(shù)左、右極限的概念以及極限存在與左右極限之間的關(guān)系。掌握利用兩個重要極限求極限的方法。理解無窮小、無窮大以及無窮小階的概念,會用等價無窮小求極限。
③理解函數(shù)連續(xù)性的概念,會判別函數(shù)間斷點的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理和介值定理),并會應(yīng)用這些性質(zhì)。重點是數(shù)列極限與函數(shù)極限的概念,兩個重要的極限:limsinx/x=1,lim(1+1/x)=e,連續(xù)函數(shù)的概念及閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。難點是分段函,復(fù)合函數(shù),極限的概念及用定義證明極限的等式。
2、一元函數(shù)微分學(xué)
①理解導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程,理解函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系。
②掌握導(dǎo)數(shù)的四則運算法則和一階微分的形式不變性。了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù),分段函數(shù)的一階、二階導(dǎo)數(shù)。會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)及反函數(shù)的導(dǎo)數(shù)。
?、劾斫獠昧_爾中值定理,拉格朗日中值定理,了解并會用柯西中值定理。
?、芾斫夂瘮?shù)極值的概念,掌握函數(shù)最大值和最小值的求法及簡單應(yīng)用,會用導(dǎo)數(shù)判斷函數(shù)的凹凸性和拐點,會求函數(shù)圖形水平鉛直和斜漸近線。
⑤了解曲率和曲率半徑的概念,會計算曲率和曲率半徑及兩曲線的交角。
?、拚莆沼昧_必塔法則求未定式極限的方法,重點是導(dǎo)數(shù)和微分的概念,平面曲線的切線和法線方程函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,一階微分形式的不變性,分段函數(shù)的導(dǎo)數(shù)。羅必塔法則函數(shù)的極值和最大值、最小值的概念及其求法,函數(shù)的凹凸性判別和拐點的求法。難點是復(fù)合函數(shù)的求導(dǎo)法則隱函數(shù)以及參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)的計算。
3、一元函數(shù)積分學(xué)
?、倮斫庠瘮?shù)和不定積分和定積分的概念。
②掌握不定積分的基本公式,不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法和分部積分法。
?、蹠笥欣砗瘮?shù)、三角函數(shù)和簡單無理函數(shù)的積分。
?、芾斫庾兩舷薹e分定義的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓萊布尼茲公式。
⑤了解廣義積分的概念并會計算廣義積分。
?、拚莆沼枚ǚe分計算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)重點是原函數(shù)與不定積分的概念及性質(zhì),基本積分公式及積分的換元法和分部積分法,定積分的性質(zhì)、計算及應(yīng)用。難點是第二類換元積分法,分部積分法。積分上限的函數(shù)及其導(dǎo)數(shù),定積分元素法及定積分的應(yīng)用。
4、向量代數(shù)與空間解析幾何
①理解向量的概念及其表示。
②掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件;掌握單位向量、方向數(shù)與方向余弦、向量的坐標表達式以及用坐標表達式進行向量運算的方法。
?、壅莆掌矫娣匠毯椭本€方程及其求法,會利用平面直線的相互關(guān)系解決有關(guān)問題。
④理解曲面方程的概念,了解常用二次曲面的方程及其圖形,會求以坐標軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標軸的柱面方程。
?、萘私饪臻g曲線的參數(shù)方程和一般方程;了解空間曲線在坐標平面上的投影,并會求其方程。
5、多元函數(shù)微分學(xué)
?、倭私舛瘮?shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。
?、诶斫舛嘣瘮?shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分。
?、劾斫夥较?qū)?shù)與梯度的概念并掌握其計算方法。
④掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法,會求隱函數(shù)的偏導(dǎo)數(shù)。
?、萘私馇€的切線和法平面及曲面的切平面和法線的概念,掌握二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求多元函數(shù)的最大值和最小值及一些簡單的應(yīng)用問題。重點是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全重點是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全微分的概念及計算復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),方向?qū)?shù)和梯度的概念及其計算??臻g曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)極值。難點是多元復(fù)合函數(shù)的求導(dǎo)法,二函數(shù)的泰勒公式。
6、多元函數(shù)積分學(xué)
?、倮斫舛胤e分與三重積分的概念,了解重積分的性質(zhì)。
?、谡莆斩胤e分(直角坐標、極坐標)的計算方法,會計算三重積分(直角坐標、柱面坐標、球面坐標)。
?、劾斫鈨深惽€積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系;掌握計算兩類曲線積分的方法;掌握格林公式并會運用平面曲線積分與路徑無關(guān)的條件。
?、芰私鈨深惽娣e分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法。
?、輹弥胤e分、曲線積分和曲面積分求一些幾何量和物理量。重點是利用直角坐標、極坐標計算二重積分。利用直角坐標、柱面坐標、球面坐標計算三重積分。兩類曲線積分的概念、性質(zhì)及計算,格林公式。兩類曲面積分的概念、性質(zhì)及計算,高斯公式。難點是化二重積分為二次積分、改換二次積分的積分次序以及三重積分計算。第二類曲面積分與斯托克斯公式。
7、無窮級數(shù)
①掌握級數(shù)的基本性質(zhì)及其級數(shù)收斂的必要條件,掌握幾何級數(shù)與p級數(shù)的收斂性;掌握比值審斂法,會用正項級數(shù)的比較與根值審斂法。
②會用交錯級數(shù)的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關(guān)系。
?、蹠髢缂墧?shù)的和函數(shù)以及數(shù)項級數(shù)的和,掌握冪級數(shù)收斂域的求法.
?、苷莆誩x、sinx、cosx、ln(1+x),(1+x)α的馬克勞林展開式,會用它們將簡單函數(shù)作間接展開;會將定義在[-L,L]上的函數(shù)展開為傅立葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)和余弦函數(shù)。重點是數(shù)項級數(shù)的概念與性質(zhì),正項級數(shù)的審斂法,交錯級數(shù)及其審斂法,絕對收斂與條件收斂的概念。冪級數(shù)的收斂半徑、收斂區(qū)間的求法,將函數(shù)展成傅立葉級數(shù)。難點是求冪級數(shù)的和函數(shù),將函數(shù)展成冪級數(shù)、傅立葉級數(shù)。
8、常微分方程
?、倭私馕⒎址匠碳捌浣狻㈦A、通解、初始條件和特解等概念;掌握變量可分離方程及一階線性方程的解法。
?、跁媒惦A法解y(n)=f(x),y″=f(x,y),y″=f(y,y’)類的方程;理解線性微分方程解的性質(zhì)和解的結(jié)構(gòu)。
?、壅莆斩A常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。
④會解包含兩個未知函數(shù)的一階常系數(shù)線性微分方程組。重點是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常系數(shù)線性微分方程的解法。難點是由實際問題建立微分方程及確定定解條件。
(注:本文來自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除)
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進入2023屆備考,跨考為23考研的考生準備了10大課包全程準備、全年復(fù)習(xí)備考計劃、目標院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點入門;個性化制定備考方案,助你贏在起跑線,早出發(fā)一點離成功就更近一點!
點擊右側(cè)咨詢或直接前往了解更多
考研院校專業(yè)選擇和考研復(fù)習(xí)計劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時學(xué)習(xí) | 34所自劃線院校考研復(fù)試分數(shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國各招生院??佳袕?fù)試分數(shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國各招生院??佳姓{(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分數(shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
2022考研數(shù)學(xué):高數(shù)部分一元函數(shù)微分學(xué)考察點
2022考研數(shù)學(xué)高數(shù)基礎(chǔ)備考各類型積分公式匯總
2022考研高數(shù)基礎(chǔ)備考:構(gòu)成函數(shù)的三要素
2022考研高數(shù)基礎(chǔ)備考:函數(shù)的奇偶性與周期性
2022考研高數(shù)基礎(chǔ)備考:有界性和單調(diào)性
2022考研高數(shù)基礎(chǔ)備考:分段函數(shù)
2022考研高數(shù)基礎(chǔ)備考:函數(shù)的間斷點
跨考考研課程
班型 | 定向班型 | 開班時間 | 高定班 | 標準班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強課+初試專屬服務(wù)+復(fù)試全科標準班服務(wù) |