2022考研高數(shù)基礎(chǔ)備考:不得不背的8個概念

最后更新時間:2021-04-09 17:55:10
輔導(dǎo)課程:暑期集訓(xùn) 在線咨詢
復(fù)習(xí)緊張,焦頭爛額?逆風(fēng)輕襲,來跨考秋季集訓(xùn)營,幫你尋方法,定方案! 了解一下>>

  2022考研的考生們已經(jīng)開始了第一輪復(fù)習(xí)備考計劃,數(shù)學(xué)作為考研中能夠拉開大分差的科目,有多少考研er是因為數(shù)學(xué)與自己心儀的院校失之交臂?建議考研數(shù)學(xué)基礎(chǔ)不好的小伙伴早點開始復(fù)習(xí),下面小編整理了2022年考研高數(shù)不得不背的8個概念,一起來看看吧。

  1、函數(shù)極限連續(xù)

 ?、僬_理解函數(shù)的概念,了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性,理解復(fù)合函數(shù)、反函數(shù)及隱函數(shù)的概念。

 ?、诶斫鈽O限的概念,理解函數(shù)左、右極限的概念以及極限存在與左右極限之間的關(guān)系。掌握利用兩個重要極限求極限的方法。理解無窮小、無窮大以及無窮小階的概念,會用等價無窮小求極限。

  ③理解函數(shù)連續(xù)性的概念,會判別函數(shù)間斷點的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理和介值定理),并會應(yīng)用這些性質(zhì)。重點是數(shù)列極限與函數(shù)極限的概念,兩個重要的極限:limsinx/x=1,lim(1+1/x)=e,連續(xù)函數(shù)的概念及閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。難點是分段函,復(fù)合函數(shù),極限的概念及用定義證明極限的等式。

  2、一元函數(shù)微分學(xué)

  ①理解導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程,理解函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系。

  ②掌握導(dǎo)數(shù)的四則運算法則和一階微分的形式不變性。了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù),分段函數(shù)的一階、二階導(dǎo)數(shù)。會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)及反函數(shù)的導(dǎo)數(shù)。

 ?、劾斫獠昧_爾中值定理,拉格朗日中值定理,了解并會用柯西中值定理。

 ?、芾斫夂瘮?shù)極值的概念,掌握函數(shù)最大值和最小值的求法及簡單應(yīng)用,會用導(dǎo)數(shù)判斷函數(shù)的凹凸性和拐點,會求函數(shù)圖形水平鉛直和斜漸近線。

  ⑤了解曲率和曲率半徑的概念,會計算曲率和曲率半徑及兩曲線的交角。

 ?、拚莆沼昧_必塔法則求未定式極限的方法,重點是導(dǎo)數(shù)和微分的概念,平面曲線的切線和法線方程函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,一階微分形式的不變性,分段函數(shù)的導(dǎo)數(shù)。羅必塔法則函數(shù)的極值和最大值、最小值的概念及其求法,函數(shù)的凹凸性判別和拐點的求法。難點是復(fù)合函數(shù)的求導(dǎo)法則隱函數(shù)以及參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)的計算。

  3、一元函數(shù)積分學(xué)

 ?、倮斫庠瘮?shù)和不定積分和定積分的概念。

  ②掌握不定積分的基本公式,不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法和分部積分法。

 ?、蹠笥欣砗瘮?shù)、三角函數(shù)和簡單無理函數(shù)的積分。

 ?、芾斫庾兩舷薹e分定義的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓萊布尼茲公式。

  ⑤了解廣義積分的概念并會計算廣義積分。

 ?、拚莆沼枚ǚe分計算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)重點是原函數(shù)與不定積分的概念及性質(zhì),基本積分公式及積分的換元法和分部積分法,定積分的性質(zhì)、計算及應(yīng)用。難點是第二類換元積分法,分部積分法。積分上限的函數(shù)及其導(dǎo)數(shù),定積分元素法及定積分的應(yīng)用。

  4、向量代數(shù)與空間解析幾何

  ①理解向量的概念及其表示。

  ②掌握向量的運算(線性運算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件;掌握單位向量、方向數(shù)與方向余弦、向量的坐標表達式以及用坐標表達式進行向量運算的方法。

 ?、壅莆掌矫娣匠毯椭本€方程及其求法,會利用平面直線的相互關(guān)系解決有關(guān)問題。

  ④理解曲面方程的概念,了解常用二次曲面的方程及其圖形,會求以坐標軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標軸的柱面方程。

 ?、萘私饪臻g曲線的參數(shù)方程和一般方程;了解空間曲線在坐標平面上的投影,并會求其方程。

  5、多元函數(shù)微分學(xué)

 ?、倭私舛瘮?shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。

 ?、诶斫舛嘣瘮?shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分。

 ?、劾斫夥较?qū)?shù)與梯度的概念并掌握其計算方法。

  ④掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法,會求隱函數(shù)的偏導(dǎo)數(shù)。

 ?、萘私馇€的切線和法平面及曲面的切平面和法線的概念,掌握二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求多元函數(shù)的最大值和最小值及一些簡單的應(yīng)用問題。重點是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全重點是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全微分的概念及計算復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),方向?qū)?shù)和梯度的概念及其計算??臻g曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)極值。難點是多元復(fù)合函數(shù)的求導(dǎo)法,二函數(shù)的泰勒公式。

  6、多元函數(shù)積分學(xué)

 ?、倮斫舛胤e分與三重積分的概念,了解重積分的性質(zhì)。

 ?、谡莆斩胤e分(直角坐標、極坐標)的計算方法,會計算三重積分(直角坐標、柱面坐標、球面坐標)。

 ?、劾斫鈨深惽€積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系;掌握計算兩類曲線積分的方法;掌握格林公式并會運用平面曲線積分與路徑無關(guān)的條件。

 ?、芰私鈨深惽娣e分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法。

 ?、輹弥胤e分、曲線積分和曲面積分求一些幾何量和物理量。重點是利用直角坐標、極坐標計算二重積分。利用直角坐標、柱面坐標、球面坐標計算三重積分。兩類曲線積分的概念、性質(zhì)及計算,格林公式。兩類曲面積分的概念、性質(zhì)及計算,高斯公式。難點是化二重積分為二次積分、改換二次積分的積分次序以及三重積分計算。第二類曲面積分與斯托克斯公式。

  7、無窮級數(shù)

  ①掌握級數(shù)的基本性質(zhì)及其級數(shù)收斂的必要條件,掌握幾何級數(shù)與p級數(shù)的收斂性;掌握比值審斂法,會用正項級數(shù)的比較與根值審斂法。

  ②會用交錯級數(shù)的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關(guān)系。

 ?、蹠髢缂墧?shù)的和函數(shù)以及數(shù)項級數(shù)的和,掌握冪級數(shù)收斂域的求法.

 ?、苷莆誩x、sinx、cosx、ln(1+x),(1+x)α的馬克勞林展開式,會用它們將簡單函數(shù)作間接展開;會將定義在[-L,L]上的函數(shù)展開為傅立葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)和余弦函數(shù)。重點是數(shù)項級數(shù)的概念與性質(zhì),正項級數(shù)的審斂法,交錯級數(shù)及其審斂法,絕對收斂與條件收斂的概念。冪級數(shù)的收斂半徑、收斂區(qū)間的求法,將函數(shù)展成傅立葉級數(shù)。難點是求冪級數(shù)的和函數(shù),將函數(shù)展成冪級數(shù)、傅立葉級數(shù)。

  8、常微分方程

 ?、倭私馕⒎址匠碳捌浣狻㈦A、通解、初始條件和特解等概念;掌握變量可分離方程及一階線性方程的解法。

 ?、跁媒惦A法解y(n)=f(x),y″=f(x,y),y″=f(y,y’)類的方程;理解線性微分方程解的性質(zhì)和解的結(jié)構(gòu)。

 ?、壅莆斩A常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。

  ④會解包含兩個未知函數(shù)的一階常系數(shù)線性微分方程組。重點是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常系數(shù)線性微分方程的解法。難點是由實際問題建立微分方程及確定定解條件。

  (注:本文來自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除)

跨考考研課程

班型 定向班型 開班時間 高定班 標準班 課程介紹 咨詢
秋季集訓(xùn) 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班)
2023集訓(xùn)暢學(xué) 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎(chǔ)階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強課+初試專屬服務(wù)+復(fù)試全科標準班服務(wù)

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權(quán)均屬北京尚學(xué)碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)帖或以其他任何方式復(fù)制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權(quán)的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責(zé)任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉(zhuǎn)載稿,本網(wǎng)轉(zhuǎn)載僅基于傳遞更多信息之目的,并不意味著再通轉(zhuǎn)載稿的觀點或證實其內(nèi)容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負版權(quán)等法律責(zé)任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責(zé)任。

③如本網(wǎng)轉(zhuǎn)載稿涉及版權(quán)等問題,請作者見稿后在兩周內(nèi)速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220