2020考研數(shù)學(xué):向量與線性方程組復(fù)習(xí)指導(dǎo)
對于線性代數(shù)來說,相對于高數(shù)是比較簡單的學(xué)科。但是往年考生的得分不是很理想,大家要重視起來。線性代數(shù)的學(xué)習(xí)往往比較費(fèi)勁,中間涉及的內(nèi)容比較廣泛。另外大家要掌握一定的復(fù)習(xí)技巧,這樣可以提高復(fù)習(xí)效率。小編特為大家提供了向量與線性方程組復(fù)習(xí)指導(dǎo)。
向量與線性方程組是整個(gè)線性代數(shù)部分的核心內(nèi)容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問題而做鋪墊的基礎(chǔ)性章節(jié),而其后兩章特征值和特征向量、二次型的內(nèi)容則相對獨(dú)立,可以看作是對核心內(nèi)容的擴(kuò)展。向量與線性方程組的內(nèi)容聯(lián)系很密切,很多知識點(diǎn)相互之間都有或明或暗的相關(guān)性。復(fù)習(xí)這兩部分內(nèi)容最有效的方法就是徹底理順諸多知識點(diǎn)之間的內(nèi)在聯(lián)系,因?yàn)檫@樣做首先能夠保證做到真正意義上的理解,同時(shí)也是熟練掌握和靈活運(yùn)用的前提。
這部分的重要考點(diǎn)一是線性方程組所具有的兩種形式——矩陣形式和向量形式;二是線性方程組與向量以及其它章節(jié)的各種內(nèi)在聯(lián)系。
(1)齊次線性方程組與向量線性相關(guān)、無關(guān)的聯(lián)系
齊次線性方程組可以直接看出一定有解,因?yàn)楫?dāng)變量都為零時(shí)等式一定成立——印證了向量部分的一條性質(zhì)“零向量可由任何向量線性表示”。
齊次線性方程組一定有解又可以分為兩種情況:①有唯一零解;②有非零解。當(dāng)齊次線性方程組有唯一零解時(shí),是指等式中的變量只能全為零才能使等式成立,而當(dāng)齊次線性方程組有非零解時(shí),存在不全為零的變量使上式成立;但向量部分中判斷向量組是否線性相關(guān)、無關(guān)的定義也正是由這個(gè)等式出發(fā)的。故向量與線性方程組在此又產(chǎn)生了聯(lián)系——齊次線性方程組是否有非零解對應(yīng)于系數(shù)矩陣的列向量組是否線性相關(guān)??梢栽O(shè)想線性相關(guān)、無關(guān)的概念就是為了更好地討論線性方程組問題而提出的。
(2)齊次線性方程組的解與秩和極大無關(guān)組的聯(lián)系
同樣可以認(rèn)為秩是為了更好地討論線性相關(guān)和線性無關(guān)而引入的。秩的定義是“極大線性無關(guān)組中的向量個(gè)數(shù)”。經(jīng)過 “秩→線性相關(guān)、無關(guān)→線性方程組解的判定”的邏輯鏈條,就可以判定列向量組線性相關(guān)時(shí),齊次線性方程組有非零解,且齊次線性方程組的解向量可以通過r個(gè)線性無關(guān)的解向量(基礎(chǔ)解系)線性表示。
(3)非齊次線性方程組與線性表出的聯(lián)系
非齊次線性方程組是否有解對應(yīng)于向量是否可由列向量組線性表示,使等式成立的一組數(shù)就是非齊次線性方程組的解。
(注:本文來自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除)
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對性指導(dǎo);2023考研的小伙伴針也已經(jīng)開始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級,無論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營帶來了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識點(diǎn)入門;個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!
考研院校專業(yè)選擇和考研復(fù)習(xí)計(jì)劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時(shí)學(xué)習(xí) | 34所自劃線院校考研復(fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國各招生院??佳袕?fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國各招生院??佳姓{(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
跨考考研課程
班型 | 定向班型 | 開班時(shí)間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |