2021考研數(shù)學(xué)如何備考線性代數(shù)?
考研數(shù)學(xué)一直是很多孩子們的“心病”,但是數(shù)學(xué)作為考研課程中的公共課程在其中起著至關(guān)重要的作用。而線性代數(shù)是相對(duì)來(lái)說(shuō)比較容易拿分的部分,因此針對(duì)2021考研數(shù)學(xué)線性代數(shù)復(fù)習(xí)的重點(diǎn),那么在具體的復(fù)習(xí)中,到底如何進(jìn)行備考?小編為考生整理了詳細(xì)的內(nèi)容,供大家參考!
1.理解與把握基本概念,熟練運(yùn)用基本運(yùn)算
線性代數(shù)的概念很多,重要的有:代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(jià)(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無(wú)關(guān),極大線性無(wú)關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對(duì)角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。線性代數(shù)中運(yùn)算法則多,應(yīng)整理清楚不要混淆,基本運(yùn)算與基本方法要過(guò)關(guān),重要的有:行列式(數(shù)字型、字母型)的計(jì)算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩與極大線性無(wú)關(guān)組,線性相關(guān)的判定或求參數(shù),求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項(xiàng)式基礎(chǔ)解系法),判斷與求相似對(duì)角矩陣,用正交變換化實(shí)對(duì)稱矩陣為對(duì)角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。
2.網(wǎng)狀化知識(shí)結(jié)構(gòu),提高綜合分析能力
線性代數(shù)從內(nèi)容上看縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,復(fù)習(xí)時(shí)應(yīng)當(dāng)常問(wèn)自己做得對(duì)不對(duì),再問(wèn)做得好不好。只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開(kāi)闊了。
文章開(kāi)頭提到了歷年真題中,兩道大題考試內(nèi)容??忌鷳?yīng)注意掌握知識(shí)點(diǎn)間的聯(lián)系與區(qū)別,例如向量組的秩與矩陣的秩之間的聯(lián)系,向量的線性相關(guān)性與齊次方程組是否有非零解之間的聯(lián)系,向量的線性表示與非齊次線性方程組解的討論之間的聯(lián)系,實(shí)對(duì)稱陣的對(duì)角化與實(shí)二次型化標(biāo)準(zhǔn)形之間的聯(lián)系等。靈活掌握他們之間的聯(lián)系與區(qū)別,對(duì)做線性代數(shù)的兩個(gè)大題在解題思路和方法上會(huì)有很大的幫助。
3.加強(qiáng)邏輯性,正確簡(jiǎn)明敘述表述
線性代數(shù)對(duì)于抽象性與邏輯性有較高的要求,通過(guò)證明題可以了解考生對(duì)數(shù)學(xué)主要原理、定理的理解與掌握程度,考查考生的抽象思維能力、邏輯推理能力。大家復(fù)習(xí)整理時(shí),應(yīng)當(dāng)搞清公式、定理成立的條件,不能張冠李戴,同時(shí)還應(yīng)注意語(yǔ)言的敘述表達(dá)應(yīng)準(zhǔn)確、簡(jiǎn)明。
4.綜合掌握“一條主線,兩種運(yùn)算,三個(gè)工具”
復(fù)習(xí)過(guò)程中,綜合掌握“一條主線,兩種運(yùn)算,三個(gè)工具”。一條主線是解線性方程組,線代概念非常多而且相互聯(lián)系,但線代貫穿的主線求方程組的解,只要將方程組的解的概念和一般方法理解透徹,再回過(guò)頭看前面的內(nèi)容就非常簡(jiǎn)單。兩種運(yùn)算是求行列式、矩陣的初等行(列)變換,三個(gè)工具是行列式、矩陣、向量。其中,向量組線性相關(guān)性是難點(diǎn),要理解記憶各條定理,理清其中關(guān)系,多做題鞏固知識(shí)點(diǎn)。特征向量與二次型雖不難,但年年必考,計(jì)算能力要跟上,多做題才能提高正確率。
5.不要陷入行列式的復(fù)雜計(jì)算之中
行列式是線性代數(shù)中的基本工具,在研究線性方程組和特征值和特征向量時(shí)會(huì)用到,有些行列式的計(jì)算很復(fù)雜,計(jì)算量也很大,但考研大綱對(duì)這部分內(nèi)容的要求并不高,只是要求會(huì)用行列式的性質(zhì)和按行(列)展開(kāi)定理計(jì)算行列式,該部分內(nèi)容不是考試的重點(diǎn),因此不要在這方面花太多時(shí)間,只要掌握基本的公式和計(jì)算方法即可。從歷年考研試題分布來(lái)看,涉及行列式計(jì)算的題型有4種形式:一是單純的行列式計(jì)算,即題目給出一個(gè)具體行列式,要求計(jì)算其值,二是給出一些抽象矩陣(方陣)及相應(yīng)條件,要求計(jì)算其矩陣行列式的值,三是在解線性方程組時(shí)需要計(jì)算其系數(shù)矩陣的行列式的值,四是在求解特征值時(shí)可能需要計(jì)算特征方程的根,這4種題型考生在復(fù)習(xí)時(shí)都要做一些題,掌握其基本解題方法。
6.抓住線性代數(shù)的核心——矩陣
矩陣和行列式是研究線性代數(shù)問(wèn)題的基本工具,尤其是矩陣,它是線性代數(shù)的靈魂,貫穿整個(gè)學(xué)習(xí)過(guò)程的始終。在求解線性方程組時(shí),主要是通過(guò)矩陣的秩來(lái)判斷解的存在性和唯一性,具體計(jì)算時(shí)主要是通過(guò)矩陣的初等變換來(lái)求其解;在分析討論向量組的線性相關(guān)和線性無(wú)關(guān)時(shí),利用矩陣的性質(zhì)來(lái)判斷其相關(guān)性和無(wú)關(guān)性也是常用的一種方法;在計(jì)算特征向量時(shí),一般都是利用矩陣的性質(zhì)或解方程組來(lái)求解;在解決二次型問(wèn)題時(shí),首先是利用矩陣運(yùn)算將其表達(dá)為矩陣乘法形式,然后利用矩陣變換將其化為標(biāo)準(zhǔn)形。由此可知,矩陣是學(xué)習(xí)的重中之重。學(xué)習(xí)矩陣時(shí),一方面要掌握其性質(zhì)并靈活運(yùn)用到有關(guān)的計(jì)算和證明問(wèn)題中,另一方面要充分結(jié)合其它知識(shí)點(diǎn)的學(xué)習(xí)來(lái)進(jìn)一步強(qiáng)化。
(注:本文來(lái)自網(wǎng)絡(luò),如有侵權(quán),請(qǐng)聯(lián)系刪除)
2022考研初復(fù)試已經(jīng)接近尾聲,考研學(xué)子全面進(jìn)入2023屆備考,跨考為23考研的考生準(zhǔn)備了10大課包全程準(zhǔn)備、全年復(fù)習(xí)備考計(jì)劃、目標(biāo)院校專業(yè)輔導(dǎo)、全真復(fù)試模擬練習(xí)和全程針對(duì)性指導(dǎo);2023考研的小伙伴針也已經(jīng)開(kāi)始擇校和復(fù)習(xí)了,跨考考研暢學(xué)5.0版本全新升級(jí),無(wú)論你在校在家都可以更自如的完成你的考研復(fù)習(xí),暑假集訓(xùn)營(yíng)帶來(lái)了院校專業(yè)初步選擇,明確方向;考研備考全年規(guī)劃,核心知識(shí)點(diǎn)入門;個(gè)性化制定備考方案,助你贏在起跑線,早出發(fā)一點(diǎn)離成功就更近一點(diǎn)!
考研院校專業(yè)選擇和考研復(fù)習(xí)計(jì)劃 | |||
2023備考學(xué)習(xí) | 2023線上線下隨時(shí)學(xué)習(xí) | 34所自劃線院校考研復(fù)試分?jǐn)?shù)線匯總 | |
2022考研復(fù)試最全信息整理 | 全國(guó)各招生院??佳袕?fù)試分?jǐn)?shù)線匯總 | ||
2023全日制封閉訓(xùn)練 | 全國(guó)各招生院??佳姓{(diào)劑信息匯總 | ||
2023考研先知 | 考研考試科目有哪些? | 如何正確看待考研分?jǐn)?shù)線? | |
不同院校相同專業(yè)如何選擇更適合自己的 | 從就業(yè)說(shuō)考研如何擇專業(yè)? | ||
手把手教你如何選專業(yè)? | 高校研究生教育各學(xué)科門類排行榜 |
相關(guān)推薦
21考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí)必備線代公式:三種特殊矩陣的方冪
21考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí)必備線代公式:矩陣秩的基本性質(zhì)
21考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí)必備線代公式:初等行變換的應(yīng)用
21考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí)必備線代公式:行簡(jiǎn)形矩陣
21考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí)必備線代公式:相似矩陣和二次型
21考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí)必備線代公式:向量組的線性相關(guān)性
21考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí)必備線代公式:矩陣初等變換與線性方程組
21考研數(shù)學(xué)基礎(chǔ)復(fù)習(xí)必備線代公式:矩陣
跨考考研課程
班型 | 定向班型 | 開(kāi)班時(shí)間 | 高定班 | 標(biāo)準(zhǔn)班 | 課程介紹 | 咨詢 |
秋季集訓(xùn) | 沖刺班 | 9.10-12.20 | 168000 | 24800起 | 小班面授+專業(yè)課1對(duì)1+專業(yè)課定向輔導(dǎo)+協(xié)議加強(qiáng)課程(高定班)+專屬規(guī)劃答疑(高定班)+精細(xì)化答疑+復(fù)試資源(高定班)+復(fù)試課包(高定班)+復(fù)試指導(dǎo)(高定班)+復(fù)試班主任1v1服務(wù)(高定班)+復(fù)試面授密訓(xùn)(高定班)+復(fù)試1v1(高定班) | |
2023集訓(xùn)暢學(xué) | 非定向(政英班/數(shù)政英班) | 每月20日 | 22800起(協(xié)議班) | 13800起 | 先行階在線課程+基礎(chǔ)階在線課程+強(qiáng)化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對(duì)性一對(duì)一課程+班主任全程督學(xué)服務(wù)+全程規(guī)劃體系+全程測(cè)試體系+全程精細(xì)化答疑+擇校擇專業(yè)能力定位體系+全年關(guān)鍵環(huán)節(jié)指導(dǎo)體系+初試加強(qiáng)課+初試專屬服務(wù)+復(fù)試全科標(biāo)準(zhǔn)班服務(wù) |